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In this paper, the three-dimensional roll-up of a viscoelastic mixing layer is numerically
simulated with the pseudospectral method using the FENE-P model. An artificial
diffusion is self-adaptively introduced into the constitutive equation to stabilize the
time integration. In the three-dimensional mixing layer and within the parameter
ranges studied, the effect of the polymer additives on the formation of the coherent
structures such as the ribs and the cups is found to be negligible. The polymer
normal stresses develop wherever there exist extensional strains that are produced
by the coherent structures and they then hinder the development of these structures.
Stretching by the quadrupoles and the ribs together gives rise to an enormous
enhancement of the polymer normal stress differences in the symmetrical plane
between the quadrupole pair. These normal stress differences directly or indirectly
weaken all large-scale structures occurring in the flow including the quadrupoles, the
cups, the ribs, the spanwise vortices which rotate in the opposite direction to that
of the cups, and the thin spanwise vortical sheets. Attenuation of these large-scale
structures leads to a diminution of small-scale structures after their breakdown in the
secondary roll-up process of the thin sheets. There is a tendency for the small-scale
structures in the core region to merge into a large-scale one in the viscoelastic case. As
a result, a flat and inclined vortex forms at the end of the simulation which resembles
the type of structure observed in an experimental mixing layer with surfactants
injected. In addition, the results show that the extensional viscosity is an important
quantity to determine the extent to which the coherent structures in a mixing layer
are modified by polymer additives.

1. Introduction
The mixing layer is an important model for the investigation of turbulence in free

shear layers and is commonly encountered in various natural flows and in industrial
equipment (e.g. combustor). Over the past thirty years, the coherent structures in
Newtonian mixing layers, known as the spanwise vortices (rollers) as a result of
Kelvin–Helmholtz instability and the streamwise counter-rotating vortices, have been
the subject of extensive studies (e.g. Lasheras & Choi 1988; Nygaard & Glezer 1991;
Rogers & Moser 1992; Leboeuf & Mehta 1996). The behaviour of the coherent
structures in a mixing layer has been well understood, see Rogers & Moser (1992) for
a review. Nevertheless, works aimed at elucidating the effects of polymer additives on
a mixing layer are limited. Experimental results reported by Hibberd, Kwade & Scharf
(1982) and Riediger (1989) showed a longer lifetime of large-scale coherent structures
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and a diminution of small-scale structures in the presence of polymer additives.
The linear stability analyses (Azaiez & Homsy 1994a; Azaiez 2000) indicated that
both polymer and fibre additives could inhibit the instability in two-dimensional
mixing layers. The numerical simulation of two-dimensional nonlinear instabilities
were conducted by Azaiez & Homsy (1994b) and Kumar & Homsy (1999) using
the FENE-P model, and Yu, Lin & Fan (1999) using a multi-bead rigid-rod-like
polymer model. Azaiez & Homsy (1994b) observed the build-up of high polymer
normal stresses along the extensional axes surrounding the spanwise vortex, vorticity
intensification in the braid region, and a slightly longer lifetime and a higher intensity
of the vortex in the viscoelastic case. Yu et al. (1999) compared a Newtonian mixing
layer and a viscoelastic one at the same Reynolds number based on solvent viscosity.
The results revealed that the addition of polymers always led to a weakened roll-up
process and a vortex of a lower intensity. In these two studies, the effect of elasticity on
flow fields was so small that a significant departure of the streamline structure from
the Newtonian case was not detected. Kumar & Homsy (1999), on the other hand,
examined the flow field that was substantially modified by the polymer elasticity.
At a ratio of Weissenberg to Reynolds number E of order unity, and a sufficiently
large polymer extensibility parameter b in the FENE-P model, they found that the
fundamental perturbation was not dominant and the roll-up process was inhibited.
In addition, they calculated the growth rates of three-dimensional perturbations
which were introduced to the two-dimensional quasi-steady states, showing that the
flow became more stable at large enough values of E and b. They suggested a
mechanism for the polymer-induced drag reduction that polymer additives prevented
the formation of regions of concentrated vorticity whose breakdown would give
rise to small-scale turbulence. Recently, Cadot & Kumar (2000) observed in their
experiments that polymer additives inhibited the formation of coherent structures in
a wake flow.

It is well known that an addition of a small amount of polymer to a wall-
bounded turbulent flow can result in a substantial drag reduction (Lumley 1969).
There is abundant experimental (e.g. Oldaker & Tiederman 1977) and numerical (e.g.
Sureshkumar, Beris & Handler 1997; Yarin 1997; Dimitropoulos, Sureshkumar &
Beris 1998) evidence showing that the drag-reduction mechanism is related to the
negative effect of polymer additives on the formation of streamwise vortices in
the near-wall flows. The streamwise vortices enhanced the small-scale motion in a
mixing layer significantly and played an important role in the transition to turbulence
(Nygaard & Glezer 1991). However, it remains unknown how polymer additives
modify the behaviour of the streamwise vortices in a mixing layer. In this study,
the roll-up of a three-dimensional viscoelastic mixing layer is numerically simulated
and the roles of polymer additives in the formation and evolution of the coherent
structures are elucidated in an attempt to answer the following questions:

(i) Are the formation and the development of the three-dimensional coherent
structures including the streamwise vortices really suppressed by polymer additives?

(ii) If so, in what way do polymer additives affect the coherent structures?
In order to better understand the dynamic behaviour of the coherent structures

in a mixing layer, the initial disturbances are only composed of two types of low-
wavenumber ones which are specially designed to generate the rollers and the counter-
rotating streamwise vortices, respectively. As a result, the flow is more similar to the
forced experimental mixing layer in which the inlet disturbances are controlled much
in the same manner as in Lasheras & Choi (1988). In this study, only the roll-up
instability and the subsequent transition process are of interest, and the effects of
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Figure 1. Diagram of a plane mixing layer. The computational domain is a periodic box (c).

polymer additives on the pairing instability and the fully developed turbulent flow
will not be addressed. Nygaard & Glezer (1991) found that the transition in a forced
mixing layer subjected to spanwise-non-uniform excitations is possible in the absence
of pairing.

In § 2, we describe the governing equations, our numerical method, and the
definitions of some quantities used in this study for analysing the results. In § 3,
we examine the effects of polymers on a two-dimensional mixing layer, and then the
three-dimensional results are presented and discussed. The conclusions are given in
the last section.

2. Numerical model
2.1. Governing equations

Figure 1 shows the standard mixing layer arising from the two parallel streams with
difference velocities U1 and U2, respectively. We denote by u0 = (U1 − U2)/2 the
free-stream velocity in a reference frame moving with the average velocity of the flow
(U1 + U2)/2, and by θ0 the initial momentum thickness of the mixing layer. The main
stream velocity difference U = 2u0 is taken as the characteristic velocity and δ0 = 2θ0

as the characteristic length. Thus, the Reynolds number is defined by Re = ρU δ0/η0,

and the Weissenberg number, We = Uλ/δ0; here, ρ, η0 and λ are the density, the
zero-shear-rate viscosity and the relaxation time of the fluid, respectively.

The dimensionless governing equations include the continuity, the momentum, and
the FENE-P constitutive equations:

∇ · v = 0, (2.1)

∂v

∂t
+ ∇

(
p + 1

2
|v|2

)
= v × ω +

k

Re
∇2v +

1

Re
∇ · τ , (2.2)

f B + We

(
∂B

∂t
+ v · ∇B − ∇vT · B − B · ∇v

)
= I, (2.3)

τ =
(1 − k)

We
(f B − I), (2.4)

f =
1 − 3/b

1 − tr(B)/b
, (2.5)

where v denotes velocity, p pressure, ω vorticity, k the ratio of the solvent viscosity ηs

to the zero-shear-rate viscosity η0, B the polymer conformation (structure) tensor, I the
unit tensor, τ the polymer stress tensor and b, a parameter representing the maximum
extensibility of polymers. τ has been scaled to η0U/δ0 and p to ρU 2. The FENE-P
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model has been used to successfully simulate two-dimensional mixing-layer flows
(Azaiez & Homsy 1994b; Kumar & Homsy 1999) and the turbulent channel flows
(Dimitropoulos et al. 1998); later on, we also consider the PTT model (Phan-Thien &
Tanner 1977) very briefly.

The time-developing mixing layer is considered here, for which periodic boundary
conditions are imposed in both streamwise and spanwise directions. To simplify the
computation, we impose the free-slip boundary condition in the transverse direction
at a finite distance (but far) away from the centre of the flow field. In other words,
what we are interested in is a flow between two smooth walls, which, however, is a
good approximation to a mixing layer of an infinite domain before the eddies reach
the walls. In fact, real mixing-layer flow also occurs in a finite domain. We set L2 = 12
for the two-dimensional case and L2 = 24 for the three-dimensional case, which will
be verified as appropriate values later.

The initial velocity field for the time-developing plane mixing layer consists of the
following three parts:

(a) a base flow with hyperbolic-tangent profile

u0 = 0.5 tanh(y); (2.6)

(b) a two-dimensional fundamental disturbance, the streamfunction of which is

Ψ (x, y) = A1Re{φ1(y) exp(iα1x)}, (2.7)

where A1 is the amplitude, α1 represents the wavenumber and φ1 denotes the
normalized eigenfunction. α1 in this study is set at 0.4446, corresponding to the
most unstable perturbation from the inviscid linear stability theory (Michalke 1964).
We fix A1 = 0.1 throughout this paper;

(c) and a streamwise-invariant three-dimensional perturbation with the following
vorticity distribution

ωx(y, z) = A3 exp(−y2/2) sin(βz), (2.8)

where β represents the spanwise wavenumber, and is taken to be one and a half
the value of the streamwise wavenumber α1 in this study, since it was found that
the three-dimensional disturbance with this β is the least stable (Lasheras & Choi
1988). A3 is fixed at 0.1. Eigenfunction is not used for the above streamwise-invariant
three-dimensional perturbations because there are no eigenfunctions that satisfy the
boundary conditions, as pointed out by Rogers & Moser (1992, hereinafter referred
to as RM).

The above initial conditions are similar to those adopted by RM, which can produce
structures of the type commonly observed in experimental mixing layers. The initial
mean polymer stress field can be determined from the constitutive equations (2.3–
2.5) with the base flow given in equation (2.6), reported in the Appendix. It is not
possible to obtain the initial disturbance polymer stresses from the linear stability
theory since the three-dimensional velocity disturbances even in the Newtonian case
cannot be determined from the linear stability theory. Therefore, we evaluate the
initial disturbance polymer stresses from the linearized constitutive equations with
initial velocity fields given above. In this study, we are only concerned with the effects
of a small amount of the long-chain polymer additives on the high-Reynolds-number
flows, i.e. high Re, high k, high b and low We/Re. For this case, the two-dimensional
linear stability analysis (Azaiez & Homsy 1994a) indicated that viscoelasticity has
negligible effects on the stability behaviour of the flow, and we found that simply
discarding the initial disturbance stress results in only negligible differences in the
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evolution of the flows. However, in the case of small k, it is necessary to incorporate
the disturbances into the initial stress conditions, otherwise, the reduction in the
diffusion of velocity disturbances at early time due to the non-unity k (see equation
(2.2)) would contaminate (or seemingly enhance) the pure effect of the shear thinning
to some extent.

The passive scalar represents a quantity that can be convected and diffused in the
flow such as temperature and mass concentration and consequently is often used to
conduct a numerical dye visualization. The passive scalar is computed by using the
following equation

∂T

∂t
+ v · ∇T =

1

Pe
∇2T , (2.9)

where Pe denotes the Péclet number and is set to be 400. The initial condition is
given by

T = 0.5[1 + tanh(y)]. (2.10)

2.2. Numerical method

The computational domain is shown in figure 1, with both periods in the streamwise
direction L1 and in the spanwise direction L3 equal one wavelength of the fundamental
modes in their own directions, respectively. The standard fast Fourier transform (FFT)
is applied in all three directions and the governing equations in the spectral space
with the pressure eliminated (with the mass conservation constraint α · v∗ = 0, where
α = (2πm/L1, 2πn/2L2, 2πl/L3) denoting the wavenumber vector of the Fourier
modes) are written as

∂v∗

∂t
+

k |α|2

Re
v∗ = f ∗ + g∗ − α(α · ( f ∗ + g∗)

|α|2
, (2.11)

∂B∗

∂t
= Q∗, (2.12)

in which f , g and Q are defined by

f = v × ω, (2.13)

g =
1

Re
∇ · τ , (2.14)

Q = −v · ∇B + B · ∇v + (∇v)T · B +
(I − f B)

We
. (2.15)

Equations (2.11)–(2.12) are advanced in time with a second-order Crank–Nicolson–
Adams–Bashforth scheme:

B∗n+1 − B∗n

�t
= 1

2
(3Q∗n − Q∗n−1), (2.16)

v∗n+1 − v∗n

�t
+

k |α|2

Re

v∗n+1 + v∗n

2
= 1

2
(3 f ∗n − f ∗n−1) +

g∗n+1 + g∗n

2

− 1

2

α{α · [(3 f ∗n − f ∗n−1) + (g∗n+1 + g∗n)]}
|α|2

. (2.17)

Nonlinear terms f and Q are computed in the physical space and then transformed
into the spectral space, leading to the so-called pseudospectral method. The aliasing
errors are removed by using the truncation method (Canuto et al. 1987).
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The initial velocity field is symmetric about the plane z = L3/2, which is preserved
by the governing equations. Hence, the efficient fast sin/cos transformations can be
used as a substitute for the standard FFT in both the transverse and the spanwise
directions. The components of the velocity vector and the conformation tensor are
divided into four groups according to their base functions in two directions:{

cos

(
πny

L2

)
cos

(
πlz

L3/2

)}
: u, Bxx, Byy, Bzz,

{
cos

(
πny

L2

)
sin

(
πlz

L3/2

)}
: w, Bxz,

{
sin

(
πny

L2

)
cos

(
πlz

L3/2

)}
: v, Bxy,

{
sin

(
πny

L2

)
sin

(
πlz

L3/2

)}
: Byz.




(2.18)

The equations in the new spectral space are essentially the same as those given above,
and slight modifications are required only for the terms involving a first-order spatial
differential. The subroutines for the one-dimensional fast Fourier, and cosine and sine
transforms are available in Press et al. (1996).

2.3. Introduction of artificial diffusion

It was found that the accumulation of numerical error during time integration can lead
to a loss of positive definiteness for the conformation tensor and then a numerical
instability (Sureshkumar & Beris 1995) sets in. For the pseudospectral method, a
simple and computationally efficient remedy is to introduce an artificial diffusive term
into the constitutive equation. In our case, equation (2.16) is simply replaced with

B∗n+1 − B∗n

�t
+ νa |α|2 B∗n+1 = 1

2
(3Q∗n − Q∗n−1), (2.19)

in which νa is the stress diffusivity. We introduce a stress diffusivity coefficient a so
that νa = ah2

2, here h2 is the transverse mesh size, considering the fact that νa should
be decreased with mesh refinement. In previous works, νa is kept invariable during the
entire simulation. A small enough value of νa was found to be capable of enhancing
the stability considerably without altering the flow dynamics for sufficiently fine
spatial discretization (Sureshkumar & Beris 1995). Equation (2.19) can be re-written
as follows

B∗n+1 =
B∗n + 1

2
�t(3Q∗n − Q∗n−1)

1 + νa�t |α|2
. (2.20)

Clearly, the artificial diffusion scheme outlined above is equivalent to a filtering of
the Fourier coefficients at every time step with the filter

σ (k1, k2, k3) = 1/(1 + νa�t |α|2). (2.21)

The filtering technique is widely used to deal with shock problems. Some classical
filters such as the Lanczos filter and the raised cosine filter (Canuto et al. 1987) were
also tested to solve the constitutive equation. We found that the resulting solution for
each filter is influenced by the intensity of the filter νa (or the number of time steps
between applications of the filter Nf ), but all solutions are reasonably accurate if the
values of νa or Nf are judiciously chosen.



Viscoelastic mixing layer 35

A simple method with the adaptive artificial diffusivity is used in this study. a is
set to be a0 initially and may be modified at each time step by inspecting the trace of
the conformation tensor:

an+1 =

{
an × 2 if tr(Bn) < s,

an/2 if tr(Bn) � s, an > a0.
(2.22)

The value of a0 is not important as long as it is small enough (10−4 in this study).
It is encouraging to find that this approach ensures a good solution stability in the
time integration process and without introducing much artificial diffusion. Moreover,
the solution is relatively insensitive to the choice of s (0 � s � 3). Thus, there is no
need to determine a reasonable parameter value for our approach. We choose s =1
throughout this study. Some numerical results to the benefit of artificial viscosity are
given (figure 3); a mesh convergence test will be presented later, in § 3.2.3.

2.4. Definition of some physical quantities

Some physical quantities that characterize the development of the mixing layer are
defined below.

Energy in the modes. Owing to the symmetry of the flow, the energies in the modes
can be defined by

Eml =
c

N1N2N3

∑
n

|v∗(m, n, l)|2 , c =




1 if m = 0 and l = 0,

2 if m = 0 or l = 0,

4 otherwise, i.e. m > 0, l > 0,

(2.23)

where N1, N2 and N3 are the number of collocation points in the periodic box (or the
Fourier modes). The energy in all three-dimensional modes (l �= 0) is defined by

E3D =
∑

m

∑
l �=0

Eml. (2.24)

Streamwise circulation. Streamwise circulation that measures the intensity of
streamwise vortices in a cross-section between z = L3/2 and z =L3 is defined by

Γx =

∫ L2/2

−L2/2

∫ L3

L3/2

ωx dz dx =

∫ L3

L3/2

w dz

∣∣∣∣
y=L2/2

y=−L2/2

−
∫ L2/2

−L2/2

v dy

∣∣∣∣
z=L3

z=L3/2

. (2.25)

Momentum thickness. Momentum thickness is defined by

θ =

∫ L2/2

−L2/2

(0.52 − U
2
) dy, (2.26)

in which U is the mean streamwise velocity.
Velocity fluctuation intensities and Reynolds stress. The fluctuation intensity of the

streamwise velocity is defined by

Urms = u′2. (2.27)

The Reynolds stress is defined by

τR = −u′v′. (2.28)

In (2.26)–(2.28), the bar represents the spatial average over the streamwise and
the spanwise periods. The fluctuating quantities are also calculated on a basis of the
spatial (or phase) average.



36 Z. Yu and N. Phan-Thien

(a)                                                       (b)                                                       (c)

Figure 2. (a) T = 40; (−0.46, −0.03); Newtonian. (b) T = 40; (−0.46, −0.03); FENE-P.
(c) T = 40; (−0.05, 3.6). Contours of (a), (b) vorticity and (c) first normal stress difference
at Re= 200. For (b), (c) We =20, b = 400, k =0.9, N1 × N2 = 256 × 512, and �t = 0.002. The
arrow in (b) points to the region of vorticity attenuation. The values in the brackets above
represent the minimum and maximum contour levels, respectively. Dotted contours represent
negative contour values.

3. Results and discussions
3.1. Two-dimensional results

Azaiez & Homsy (1994b) and Kumar & Homsy (1999) numerically simulated the
two-dimensional roll-up of a viscoelastic mixing layer and provided good insight into
the effects of viscoelasticity on the flow dynamics. However, Kumar & Homsy (1999)
observed that weak viscoelasticity (small b) seems to intensify the roll-up process and
the mechanism remains unidentified. We believe this viscoelasticity effect is related to
the shear-thinning behaviour of the FENE-P fluid (the amount of shear-thinning at
a fixed shear rate increases with increasing We = λγ̇ (γ̇ is the shear rate) and with
decreasing b), totally consistent with the observation of Kumar & Homsy (1999) that
the positive effect of viscoelasticity is only present at small b and more obvious as
We is increased.

Kumar & Homsy’s results (1999) revealed that strong viscoelasticity (large b) will
inhibit the roll-up process. The first normal stress difference builds up along the
extensional axes of the spanwise vortex (as shown in figure 2c), and attenuates
the vorticity at the edges of the extensional strain region (marked by an arrow in
figure 2b). The vorticity attenuation speeds up the vorticity diffusion in the core and
on the other hand imposes a negative effect on the concentration of the vorticity into
a single vortex. When viscoelasticity is very strong, the vorticity with sign opposite to
that of the mean vorticity emerges and a large-scale vortex cannot form (Kumar &
Homsy 1999).

We next examine the effects of the artificial diffusion on the computational stability
and the flow dynamics. It is well known that the stress concentration at high
We constitutes the main difficulty in the viscoelastic flow computation. For the
pseudospectral method used here, it seems possible to overcome this difficulty by
continually increasing spatial and temporal resolution. For example, for the case of
We= 20, b = 400, k = 0.9, the computation is unstable at N1 × N2 = 128 × 128 and
�t = 0.01 (figure 3a, d), but becomes stable at N1 × N2 = 256 × 512 and �t = 0.002
(figure 2). However, the computational cost required may be prohibitively high,
particularly in the three-dimensional case. When using coarse meshes, we have to
introduce some artificial diffusion to stabilize the time integration. Figures 2 and
3 confirm that artificial diffusion can enhance the stability considerably without
appreciably altering the flow dynamics, although it unavoidably attenuates the
gradients of the normal stress and may smooth out some local small-scale structures
which are otherwise caused by the high stress gradients.
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(a)                                                       (b)                                                       (c)
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Figure 3. (a) T = 40; (−0.46, −0.03). (b) T = 40; (−0.46, −0.03). (c) T = 40; (−0.46, −0.03).
(d) T = 40; (−0.05, 4.0). (e) T = 40; (−0.05, 3.4). (f ) T = 40; (−0.05, 3.4). Effects of the artificial
diffusion on (a), (b), (c) vorticity and (d), (e), (f ) first normal stress difference. (a), (d) no
artificial diffusion. (b), (e) adaptive artificial diffusivity with s = 1. (c), (f ) constant artificial
diffusivity with a =0.1. Re= 200,We= 20, b = 400, k = 0.9, N1 × N2 = 128 × 128, �t = 0.01.
The values in parentheses represent the minimum and maximum contour levels, respectively.
Dotted contours indicate negative values.

3.2. Three-dimensional results

3.2.1. Formation and evolution of coherent structures in the Newtonian case

Three-dimensional results are obtained with N1 × N2 × N3 = 128 × 256 × 64 and
�t = 0.01. Figure 4 shows the standard structures of the streamwise rib-shaped
vortices (ribs), the quadrupoles and the spanwise cup-shaped vortices (cups) in a three-
dimensional plane mixing layer. Their formation processes were well-documented in
RM and will be described only briefly. Following RM, we view the simulated flow
mainly through four specific planes: the mid-braid plane (MP, X = 0), the roller core
plane (CP, X =L1/2), the rib plane (RP, Z =L3/4), and the between-ribs plane (BP,
Z = L3/2), as shown in figure 1. The Kelvin–Helmholtz instability first results in the
roll-up of a mixing layer. In the process, the initial weak streamwise perturbation
tubes are intensified rapidly along the extensional axes owing to the stretching by the
spanwise rollers, and then collapse into circular counter-rotating ribs. Meanwhile, the
quadrupoles rotating in the opposite direction to that of the ribs develop at the roller
core region. From figure 5(a), the quadrupole and the rib pairs together produce
extensional (marked by B) and compressive (by A) strains alternately in the spanwise
direction at both the top and the bottom of the regions of the rollers, resulting in
the enhancement and the attenuation of the spanwise vorticity at the corresponding
regions. As a result, the rollers corrugate in the spanwise direction and the cups form
at the bends of the rollers. In addition to the ribs, the cups and the quadrupoles, the
occurrence of the spanwise vorticity with sign opposite to that of the mean vorticity is
also a manifestation of three-dimensional evolution of a mixing layer. These vortical
structures first appear in the vicinity of the ribs (figure 4), and then extend in the
streamwise direction under the induction of the cups. Concentrated vorticity emerges
in the region adjacent to the cups (figure 5b), forming into real spanwise vortices.

Two important events are observed during the further evolution of the coherent
structures before the transition to turbulence. One is the shredding of the ribs in
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Figure 4. Iso-surfaces of (a), (b) streamwise vorticity showing the ribs and the quadrupoles,
and (c), (d) spanwise vorticity showing the cups and occurrence of the opposite-signed vorticity
in a mixing layer. (b), (d) are top views of (a), (c) respectively. The above structures inside
the box are based on our numerical results for the Newtonian fluid at Re= 200 and t = 40,
and those outside the box are produced with the periodicity. Dark surfaces indicate positive
vorticity of 0.5 for (a), (b) and 0.1 for (c), (d), and light surfaces indicate negative vorticity of
−0.5 for (a), (b) and −0.6 for (c), (d).

A A
B

AB B

y

z

y

x

c

Figure 5. Contours of (a) ωx in the roller core plane (CP) and (b) ωz in the rib plane (RP).
Three extensional strain fields caused by the coherent structures are shown, among which
the one marked by A is most important to the viscoelastic effects. (a) t = 40 (−0.6, 0.6).
(b) t = 60 (−0.9, 0.4).

the mid-braid plane and the other is the formation and the secondary roll-up of
strong thin spanwise vortical sheets. It can be easily understood from figure 4 that
the mutual induction between the ribs and the quadrupoles will lead both of them
to tilt laterally, as shown in figure 6(a). With the quadrupoles extending towards the
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Figure 6. Iso-surfaces of the streamwise vorticity at (a) t = 60 showing lateral tilt of the ribs
and the quadrupoles and (b) t =80 showing shredding of the ribs at the braid region and
then touch of the rib pairs in the between-rib plane for the Newtonian case at Re= 200. Dark
surfaces indicate positive vorticity of 0.5 and light surfaces indicate negative vorticity of −0.5
for both (a) and (b).

braid region, the lateral inclination angle of the ribs and the lateral shearing force
imposed on the ribs in the mid-braid plane become larger and larger, eventually
resulting in the shredding of the ribs there (figure 6b). After the shredding, the rib
pairs are pushed together over the whole streamwise range by the induction of the
quadrupoles (figure 6b) and their interactions give rise to a substantial stretching and
an enhancement of the spanwise vorticity above them (marked by D in figure 12b).
As a result, strong spanwise vortical sheets form and they then undergo the secondary
roll-up (figures 13a–c). Unlike the primary roll-up, a small circular vortex core with
very strong vorticity occurs at about t = 85 as a result of a small-scale roll-up and
the concentrated vorticity diffuses rapidly, which is responsible for a conspicuous
vorticity pulse shown in figure 8(a). The vortical sheet finally rolls up into three
vortices under the influence of the nearby opposite-signed vorticity (figure 13c). It is
conceivable that the secondary roll-up of the sheets would give rise to breakdown
of the ribs located just below them. Furthermore, the other vortical structures such
as the quadrupoles and the spanwise vortices with sign opposite to that of the cups
also break down in that process, and the flow appears ‘turbulent’ (figures 14a, 15a

and 16a). RM presented similar flow characteristics after the secondary roll-up of
the sheets, but they did not report events such as the shredding of the ribs and the
formation and secondary roll-up of the sheets. The secondary roll-up of thin vortical
sheets emerging after pairing was found to play an important role in the transition to
turbulence of a mixing layer (Moser & Rogers 1991) and was observed in a stratified
experimental mixing layer (Atsavapranee & Gharib 1997).

3.2.2. Effect of viscoelasticity

As mentioned earlier, we are only concerned with the effects of a small amount
of the long-chain polymer additives on the high-Reynolds-number flows, i.e. high
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Re, high k, high b and low We/Re. It is well known that the polymer-induced drag
reduction in the wall-bounded shear turbulence takes place under these conditions,
and two experimental works on a viscoelastic mixing layer available in the literature
(Hibberd et al. 1982; Riediger 1989) were also conducted under similar conditions.
We now examine the effect of viscoelasticity on the flow mainly at two sets of
parameter values. One is at Re = 200, We =20, k = 0.9 and b = 400, and the other is
at the same parameter, but with b = 900. For both parameter groups, the effect of the
shear-thinning is expected to be very small, and we will focus on the effects of the
polymer normal stresses.

Time developments of the momentum thickness, energy in the three-dimensional
disturbances, the vorticity extrema and the streamwise circulations are given in
figures 7–9. It can be seen from these figures that polymer additives exert negligible
influence on the flow field before t = 50, but subsequently they dramatically reduce
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Figure 10. Contours of the trace of the conformation tensor tr(B) in the roller core
plane (CP). Re= 200, We =20, b =400 and k =0.9. (a) t = 30 (20, 180). (b) t = 40 (20, 190).
(c) t = 50 (20, 200). (d) t = 60 (20, 350).

the three-dimensionality or the inhomogeneity of the flow. Typical coherent structures
including the cups, the ribs and the quadrupoles have already formed by t = 50, thus
we can draw the conclusion that the effects of viscoelasticity on the formation of the
coherent structures in a forced mixing layer are negligible.

We now investigate the behaviour of the polymer normal stresses, in order to explore
the mechanism by which polymer additives affect the flow fields substantially after
t = 60. The traces of the conformation tensor and the second normal stress differences
are plotted in figure 10 and figure 11, respectively. Two-dimensional results reveal
that an extensional strain field can cause substantial stretching of polymers and then
a dramatic increase in the polymer normal stresses there. This mechanism still holds
in the three-dimensional case. There are four conspicuous extensional strain fields in
a three-dimensional mixing layer prior to t = 60. The first one is produced by the
rollers (or the cups), as we observed in the two-dimensional case. The second and
third are caused by the ribs and the quadrupoles, as shown in figure 5(a). The last
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Figure 11. Contours of the second normal stress difference τyy − τzz in (a) the between-rib
plane (BP), (b) the roller core plane (CP) and (c) the rib plane (RP). Re= 200, We = 20, b =400
and k = 0.9. Solid contours indicate positive stress and dotted contours indicate negative stress.
(a) t =60 (0.3, 23). (b) t = 60 (−2.0, 15). (c) t = 60 (−4.5, 2.1).

one is associated with the spanwise vortices that rotate in the opposite direction to
that of the cups, which are expected to produce extensional strains mainly in the
transverse direction (figure 5b).

The extensional strain field imposed by the rollers dominates the stretching of
polymers at early time (about t < 30). By t =40, the wrapping effect of the ribs
has given rise to the appearance of a mushroom pattern for the tr(B) in the roller
core plane (figure 10b). At t = 60, the tilt of the ribs allows the extensional strain
field in the spanwise direction caused by the quadrupoles and the ribs (marked by
B in figure 5a) to extend through the rib plane, resulting in the spanwise stretching
of polymers and the occurrence of negative τyy − τzz (due to increase in τzz) in the
rib plane at the core region (figures 10c, d and 11c). The extensional strain field in
the transverse direction (marked by A in figure 5a) produces tr(B) (mainly Byy) and
accordingly τyy in BP between the ribs and quadrupoles at t =50 (figure 10c). They
then increase dramatically and the normal stress differences have become so large
by t = 60 that other structures of the normal stress differences are overshadowed, as
shown in figure 11(a, b). Finally, from figure 11(c), we can observe two regions of the
second normal stress differences arising from the fourth strain field mentioned above.

It was made clear in the two-dimensional case that the normal stress differences
building up in the extensional strain field produced by vortices play a negative role in
the subsequent evolution of the vortices. All normal stress differences mentioned above
behave the same way, among which the effect of the one appearing in the between-rib
plane between the ribs and the quadrupoles, not surprisingly, is found to be most
pronounced. It gives rise to the small regions of opposite-signed streamwise vorticity
between the pair of quadrupoles and between the pair of ribs, respectively, at t = 60
(figure 12a, d), which weaken the induction intensities of the quadrupoles and the
ribs. The attenuation of the intensities of the quadrupoles is more pronounced than
that of the ribs since the contribution of one quadrupole to the streamwise circulation
in the roller core plane, according to figure 9, is decreased more than that of the two
ribs together. At t = 80, the size of the quadrupoles at the core region is appreciably
reduced (figure 12b, e), and their induction intensity is accordingly diminished, which
is clearly indicated by the fact that the Γx is positive in the viscoelastic case and
negative in the Newtonian case at that time (figure 9). In addition, the effect of the
normal stresses at the between-rib plane (BP) region on the cups is also significant.
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Figure 12. Comparisons of vorticity contours between the Newtonian case (a), (b), (c) at
Re =200 and the viscoelastic case (d), (e), (f ) at Re= 200, We = 20, b = 400 and k = 0.9.
(a), (d) ωx in the roller core plane, (b), (e) ωx in the roller core plane and (c), (f )
ωz in the between-rib plane. Solid contours indicate positive vorticity and dotted contours
indicate negative vorticity. (a) t =60 (−0.9, 0.9). (b) t =80 (−1.5, 1.5). (c) t = 60 (−0.9, −0.1).
(d) t = 60 (−0.9, 0.9). (e) t =80 (−0.9, 0.9). (f ) t = 60 (−0.9, 0.2).

The opposite-signed vorticity caused by the large streamwise stress gradients appears
near the cups (figure 12c, f ) and hinders coalescence of the vorticity in the tails
into the cores of the cups. As a result, two vortex cores in a viscoelastic fluid can
be observed at t = 80 and they merge into one at t = 90 ∼ 110, but the structure is
not cup-shaped and much weaker in intensity than the counterpart in the Newtonian
mixing layer (figure 13).

In the three-dimensional case, all sorts of vortical structures interact with each
other and new types of structure may occur as a result of their nonlinear interactions.
Hence, attenuation of one type of structure may lead to inhibition or retardation of
the development of all other structures and the formation of new types of structures.
For the three-dimensional viscoelastic mixing layer studied here, the main chain of
events is as follows: viscoelasticity reduces the induction intensity of the quadrupoles,
as discussed above; the resulting weaker quadrupoles lead to the weaker interaction
between the ribs at the between-rib plane region (figure 12b, e); the weaker extensional
strains caused by the ribs result in the weaker spanwise vortical sheets; and the
weaker vortical sheets give rise to the weaker secondary roll-up of the sheets where
the aforementioned vorticity pulse observed in the Newtonian case is completely
inhibited (figure 8a) and only two secondary rollers result in the case of b = 400
compared to three in the Newtonian case (figure 13). Certainly, the attenuation of
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Figure 13. Contours of ωz in the between-rib plane, showing the secondary roll-up of the
spanwise vortical sheets in (a), (b), (c) a Newtonian mixing layer at Re =200 and (d), (e),
(f ) a viscoelastic mixing layer at Re= 200, We =20, b =400 and k = 0.9. Solid contours
indicate positive vorticity and dotted contours indicate negative vorticity. (a) t = 90 (−1.9, 0.5).
(b) t =100 (−1.6, 0.5). (c) t = 110 (−2.2, 0.25). (d) t = 90 (−1.4, 0.1). (e) t =100 (−0.8, 0.1).
(f ) t = 110 (−0.9, −0.1).

the intensities of the ribs and the thin sheets not only results from the weakened
quadrupoles, but from the direct effect of viscoelasticity and the weakened cups,
although the latter two effects are expected to be less pronounced. In addition, the
inhibition of the development of the spanwise vortices with sign opposite to that of
the cups is also considerable after t = 60 in the viscoelastic mixing layer (figure 8b),
and the mechanism is simple if we consider that their vorticity enhancement is due
to the inductions by the cups, the quadrupoles and the ribs.

We have seen that viscoelasticity weakens the intensities of all large-scale vortical
structures in the mixing layer. The experiments (Hibberd et al. 1982; Riediger 1989)
showed that the large-scale structures existed longer in the viscoelastic mixing layer
than in the Newtonian one. A reasonable explanation is that weaker large-scale
structures may have longer lifetimes because stronger vortices, generally speaking,
break down into smaller-scale vortices more quickly. For example, the quadrupoles
in the viscoelastic fluids are found to be able to survive a longer time (figure 14).
Diminution of small-scale structures observed in the experimental viscoelastic mixing
layer (Hibberd et al. 1982; Riediger 1989) can be explained by consideration of two
factors, based on our numerical results: one is that breakdown of weaker large-scale
vortices results in fewer smaller-scale vortices, as illustrated in figure 14, and the
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Figure 14. Iso-surfaces of the streamwise vorticity ωx in (a) a Newtonian mixing layer
(Re= 200) and (b) a viscoelastic one (Re= 200, We = 20, b = 400 and k =0.9) at t = 100. Dark
surfaces indicate positive vorticity of 0.5 and light surfaces indicate negative vorticity of −0.5.
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Figure 15. Iso-surfaces of the spanwise vorticity ωz in (a) a Newtonian mixing layer
(Re= 200), (b) a viscoelastic one (Re =200, We= 20, b =400 and k =0.9) and (c) a viscoelastic
one (b =900) at t = 110. Dark surfaces indicate positive vorticity of 0.3 and light surfaces
indicate negative vorticity of −0.3.

other is that there is a tendency for the small-scale structures in the core region to
merge into large-scale ones in the viscoelastic case (figures 15 and 16). For b = 900,
a flat and inclined vortex forms at t = 110 (figures 15c and 16c), which resembles
the structure of the type observed in an experimental mixing layer with surfactants
injected (Riediger 1989).

It was found that the velocity fluctuations were enhanced along the flow direction
and suppressed along the other two in the wall-bounded shear turbulence due to
polymer additives (e.g. Wei & Willmarth 1992; Dimitropoulos et al. 1998). In the
viscoelastic mixing layer of a 50 p.p.m. polyacrylamide solution at Reynolds number
of the order of 104, Hibberd et al. (1982) observed that the streamwise and the
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Figure 16. Contours of ωz in (a) a Newtonian mixing layer (Re= 200), (b) a viscoelastic one
(Re= 200, We= 20, b = 400 and k = 0.9) and (c) a viscoelastic one (b = 900) in the rib plane
(RP) at t = 110. Solid contours indicate positive vorticity and dotted contours indicate negative
vorticity. (a) t = 110 (−1.3, 0.6). (b) t = 110 (−0.7, 0.4). (a) t = 110 (−0.7, 0.2).
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(d) Reynolds turbulence stress τR as functions of the transverse position. Re= 200, We= 20
and k = 0.9.

transverse velocity fluctuations and the Reynolds stresses were all lower upstream
but higher downstream compared to those in the corresponding Newtonian mixing
layer. On the other hand, Riediger (1989) reported that in the 900 p.p.m. surfactant
solution, the streamwise velocity fluctuation in the vicinity of the centre of the mixing
layer was stronger, and the transverse velocity fluctuation and the Reynolds stress
were lower than in the Newtonian fluids irrespective of the streamwise positions.
Figure 17 plots the calculated velocity fluctuations in all three directions and the
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Reynolds stress at t = 110, from which we can see that all quantities are suppressed
by polymer additives and the suppression of Wrms is more pronounced than the others,
in particular Urms, indicating that the diminution of the intensities of the streamwise
vortical structures is the most essential effect of viscoelasticity, consistent with the
analysis of vorticity dynamics presented earlier. Our Reynolds number is much lower
than used in the experiments and the transition to turbulence of our viscoelastic
mixing layers is obstructed, thus it is more suitable to compare our results with those
of Hibberd et al. (1982) at upstream than downstream – a qualitative agreement is
found here. It is interesting that the vortical structures for b = 900 at t = 110 in our
simulations are similar to those observed in the surfactant solution, as mentioned
earlier, and accordingly, the velocity fluctuations and the Reynolds stress for both
solutions are also in qualitative agreement.

It has been observed that, in wall-bounded flows, the maximum polymer extension
occurs on the edge of streamwise vortices that typically appear in counter-rotating
pairs, and the turbulent fluctuation that cause transport of polymer from the vortex
surface to the core can in turn influence the dynamics of these vortices. In our mixing
layer, we have observed that the enormous polymer extension also appears on the
edge of the streamwise vortices, but the transport of the polymer from the edge to
the core is not a necessary condition for influencing the dynamics of the vortices,
since the stretching of polymer on the edge of the vortices can diminish the vorticity
there and even cause the opposite-signed vorticity, and consequently affect the vortex
dynamics.

Dye visualization is the main method used in experiments to demonstrate the effects
of viscoelasticity on the coherent structures. To produce a numerical dye visualization,
we plot the contours of the passive scalar at t = 90, 100 and 110 in the rib plane
and the between-rib plane in figures 18 and 19, respectively. The passive scalar, are
controlled by the vortical structures; figures 18 and 19 confirm that the inhomogeneity
of the flow is greatly inhibited by polymer additives.

3.2.3. Effects of b and We

The flow dynamics in the three-dimensional case is much more complex than in
the two-dimensional case, hence, it is necessary to inspect to what extent the accuracy
of our results is affected by the stress artificial diffusion, although we have verified
that its effect on the two-dimensional flow dynamics is marginal. It is not possible
to obtain the flow fields substantially modified by viscoelasticity without introducing
the artificial diffusion in the three-dimensional case owing to the prohibitively high
computational cost, and what we can do is to check the mesh convergence of
the results in the presence of the artificial diffusion. In addition, the introduction
of the free-slip boundary condition at a finite transverse position may question
our numerical model as an appropriate approximation to a mixing layer when the
vortices approach close to the boundary. Therefore, we plot in figure 20 the time
developments of the maximum streamwise vorticity and Urms at t = 110 obtained at
the coarser mesh resolution of 64 × 128 × 64 and the enhanced L2 of 28, respectively,
for the case of Re= 200, We= 20, b =400 and k =0.9. The differences between the
results for L2 = 24 and L2 = 28 are not discernible except for Urms near the boundary,
indicating that L2 of 24 is large enough to achieve an excellent approximation over
the simulation time covered. The results for the mesh resolution 64 × 128 × 64 do
not differ significantly from those for 128 × 256 × 64, in particular before t = 90,

indicating that the results presented in this study are reasonably accurate and our
adaptive method for introducing the artificial diffusivity is very effective.
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Newtonian

FENE-P,  b = 400

Figure 18. Contours (grey colourmap) of the passive scalar in the rib plane (RP) at t = 90,
100 and 110 for different fluids.

Newtonian

FENE-P,  b = 400

Figure 19. Contours (grey colourmap) of the passive scalar in the between-rib plane (BP) at
t = 90, 100 and 110 for different fluids.
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Figure 21. Effects of b for the FENE-P model on (ωx)max. The curve for the PTT model is
plotted for inspecting the role of the extensional viscosity. Re= 200 and We= 20.

Since the mesh resolution 64 × 128 × 64 can give predictions with acceptable
accuracy, we use it to compute the flows for examining the effects of b and We on the
flow dynamics. The results are shown in figures 21 and 22, from which, we can see that
the developments of the streamwise structures, not surprisingly, are inhibited more
significantly at higher b and We. The results of Dimitropoulous et al. (1998) showed
that the extensional viscosity was an important quantity to account for the polymer-
induced drag reduction in the turbulent channel flow and the velocity fluctuations
were almost exclusively determined by the extensional viscosity at a fixed We. For
a steady uniaxial extensional flow of the FENE-P fluids, the extensional viscosity is
given by

ηe

η0

= 3[k + (1 − k)ξ ], (3.1)

in which ξ is a function of b and Weε̇, ε̇ being the dimensionless extensional strain
rate. The value of ξ is almost unity at small Weε̇ and approaches 2b/3 at large
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Figure 22. Effects of We for the FENE-P model on (ωx)max. Re= 200, b = 400 and k = 0.9.

Weε̇. For the unsteady complex flows such as the mixing layer studied here, it is
not possible to determine an equivalent extensional strain rate that is independent of
the other parameters. Therefore, we only match the extensional viscosity by adjusting
the values of k and b, as Dimitropoulous et al. (1998) did. From equation (3.1), the
system with k =0.9 and b =100 matches the one with k = 0.975 and b = 400 in terms
of the extensional viscosity at infinitely large Weε̇. Actually, infinitely large Weε̇ is
not a necessary condition for this match, and the match is valid as long as ξ is a
linear function of b, which seems to approximately hold at Weε̇ = O(1), and b � 1,

according to equation (3.1). Figure 21 confirms that the extensional viscosity is also
an important quantity to determine the extent to which the coherent structures in a
mixing layer are modified by polymer additives.

The affine PTT model (Phan-Thien & Tanner 1977) takes the form

[1 + εtr(B − I)] (B − I) + We

(
∂B

∂t
+ v · ∇B − ∇vT · B − B · ∇v

)
=0, (3.2)

τ =
(1 − k)

We
(B − I), (3.3)

in which ε represents the extensibility of the polymer and is equivalent to 1/b in the
FENE-P model, since the limiting value of ξ is 2/3ε. Figure 21 shows that the affine
PTT model and the FENE-P model produce essentially the same results at the same
extensional viscosity, which further corroborates the importance of the extensional
viscosity, and on the other hand, indicates that the affine PTT model is also a good
model to describe the flow of the drag-reducing polymer. The effects of the polymer
normal stresses on the flow dynamics are marginal at either small We or small b

irrespective of how large the other one is, as indicated in figures 21 and 22.

4. Conclusions
For the forced three-dimensional mixing layer and the parameter ranges studied,

the effect of polymer additives on formation of the coherent structures, including the
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quadrupoles, the ribs, the cups and the spanwise vortices rotating in the opposite
direction to that of the cups, is found to be negligible (t < 50). The polymer normal
stresses develop wherever there exist extensional strains that are produced by the
coherent structures. They then hinder the development of these structures. Stretching
by the quadrupoles and the ribs together at the between-rib plane region gives rise to
enormous enhancement of the polymer normal stress differences there. These normal
stress differences diminish the intensities of the quadrupoles, the cups and the ribs,
which further inhibit growth in the spanwise vorticity with opposite sign to that
of the mean vorticity. In the viscoelastic case, weaker intensity of the quadrupoles
leads to weaker ribs, weaker spanwise vortical sheets and weaker secondary roll-up
of the sheets. Attenuation of these large-scale structures results in a diminution of
small-scale structures after their breakdown. There is a tendency of the small-scale
structures in the core region to merge into a large-scale one in the viscoelastic case,
as a result, a flat and inclined vortex forms which resembles the type of structure
observed in an experimental mixing layer with surfactants injected. The extensional
viscosity is an important quantity to determine the extent to which the coherent
structures in a mixing layer are modified by polymer additives.
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for their invaluable comments and suggestions. Z. Y. gratefully acknowledges an
IPRS scholarship from the Australian government and an IPA scholarship from the
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Appendix. Solution of the FENE-P model in a steady shear flow
Consider the following dimensional FENE-P constitutive equations:

f B + λ

(
∂B

∂t
+ v · ∇B − ∇vT · B − B · ∇v

)
= I, (A 1)

τ =
ηp

λ
(f B − I), (A 2)

f =
1 − 3/b

1 − tr(B)/b
, (A 3)

S = 2ηs D + τ , (A 4)

where ηp is the polymer viscosity, S is the total stress tensor, D is the strain-rate
tensor, and the other quantities have been defined in § 2.

For a steady shear flow with the velocity profile u = u(y), equation (A 1) yields

(
1 − 3/b

1 − (Bxx + 2Byy)/b

)
Bxx − 2WsBxy = 1,

(
1 − 3/b

1 − (Bxx + 2Byy)/b

)
Byy = 1,

(
1 − 3/b

1 − (Bxx + 2Byy)/b

)
Bxy − WsByy = 0,




(A 5)
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where Ws = λ du/dy. The solution of the above set of equations is

Bxx = −ξb + ξ + b,

Byy = Bzz = ξ,

Bxy = W 2
s ξ,

ξ =
1

6Ws

χ − b

Ws

1

χ
,

χ = 3

√
6b

(
9Ws +

√
3
(
2b + 27W 2

s

))
.




(A 6)

Particularly, for a simple shear flow with the shear rate of γ̇ , from equations (A 2)–
(A 4) and (A 6) we can obtain

η − ηs

η0 − ηs

= ξ, (A 7)

where η is the viscosity defined by η = Sxy/
·
γ .

The solution for a steady uniaxial elongational flow can also be easily obtained,
and is not given here for brevity.
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